Skip to content

Machine learning resources


Online resources : dataloop ๐Ÿ“‘ huggingface

Coding assistants : Windsurf vs-code plugin โ›ฝ Refact.ai ๐Ÿฎ codeconvert ๐Ÿ›ซ

APIs : Anthropic API ๐Ÿ“ก Google GenAI โ›… OpenAI-python โ€ฆ

LLMs : OLlama ๐Ÿ• Whisper ๐ŸŽค Gemma ห€ ๐Ÿ’Ž SpaCy ๐Ÿ–ฅ๏ธ

Light LLMs : litgpt ๐Ÿค– pythia ๐Ÿค– TinyLlama ๐Ÿค– NanoGPT-128Mห€

Physics : PhysicsNeMo ๐Ÿ”ฏ ( e.g. Fourier darcy_fno )

Geophysics : SPADE-Terrain-GAN ๐ŸŒ ada_multigrid_ppo

Training : Lookahead ๐ŸŽฏ Gymnasium ๐Ÿ‘ฏ

Distributed training : NCCL ๐Ÿ“ฟ GLOO ๐Ÿ“ฟ MPI ๐Ÿ“ฟ ห€

ML deployment : llama.cpp ๐Ÿ“ฆ Pytorch ๐Ÿขš onnx ๐Ÿ“ฆ jax onnx runtime ๐ŸงŠ MLflowห€

UI : ComfyUI ๐ŸŽจ

Agents : stanford-oval/storm ๐ŸŒottomator ๐Ÿ”ฑ

Datasets : VQA๐Ÿ‘‡ ๐ŸŒ„ WeatherBench ๐Ÿ“ธ COCOห€ ๐Ÿ“ท FineWebห€

Computational costs, based on F.G.Raeiniโ€™s MSc, Per batch size of 128, GPU: N100, CPU: AMD 5700U

ModelNum-Paramssize (MB)Inf time (GPU)Train-time CPU!Acc. VQAv1/2,AOK
ViLT82M4702 s25 s72%, 44%
ResAttLSTM802.5 s62%, 30%

Larger models:

GIT: 707MB | Qwen2-72B: 43GB | BLIP: 990MB-1.9GB | Florence-230M | LLaVA-7B: 15GB | LAVIS


VQA datasets:

datasetVQA-v2VQA-v1AOK-VQAVizWiz
train, val:443k, 214k214k, 121k17.0k, 1.14k200k, 40k ห€